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⋆ These notes were created during my review process to aid my own understanding and
not written for the purpose of instruction. I originally wrote them only for myself, and they
may contain typos and errors a. No professor has verified or confirmed the accuracy of these
notes. With that said, I’ve decided to share these notes on the off chance they are helpful to
anyone else.

aAny corrections are greatly appreciated.

§1 September 7, 2022

§1.1 Basic definitions

Any experiment involving randomness can be modelled as a probability space. In this course
we define probability space (Ω,F ,P) using the terminology of measure theory. Measure theory
was initially created to generalize the notion of length, area and volume of subsets of Euclidean
space. In this course we use Kolmogorov’s framework of probability exclusively, however, there are
certain non-commutative versions that are used in quantum mechanics, which are generalizations
of the Kolmogorov model.1

Its impossible to assign length to all subsets of R while preserving additivity and invariance.

• The sample space Ω is a set of all possible outcomes ω ∈ Ω of a random experiment (e.g.
Ω = [0, 1] for the uniform distribution).

• The event space F is a set of subsets of Ω

• and P : F → [0, 1], probabilities are assigned A 7→ P(A) through probability measure P

Definition 1.1 (Field) A set is a collection of elements. A class is a set of sets. All the
elements of a class are themselves sets. A nonempty class A of subsets of Ω is called a field
if

(i) A ∈ A =⇒ Ac ∈ A (closed under complementation)

(ii) A1 ∈ A, A2 ∈ A =⇒ A1 ∪A2 ∈ F (Closed under finite union)

The smallest field we can have is {∅,Ω}.We are using the word ”small” in the sense that the
number of sets in the field.2 Note that we can actually recover the property Ω ∈ A,∅ ∈ A by
applying conditions (i) and (ii). If A ∈ A by (i) Ac ∈ A. By (ii) A ∪Ac ∈ A =⇒ Ω ∈ A. Since
Ω ∈ A, by (i) Ωc ∈ A =⇒ ∅ ∈ A.

Example 1.2 (Finite and cofinite fields). A = {A : A ⊂ Ω with A is finite or cofinite}; A is
called cofinite if Ac is finite. Let Ω = {x1, ..., xn, ...}; An = {xn}: singleton set =⇒ Ac

n is
cofinite. Let A,B ∈ A. To show that A ∪B ∈ A:

1. if A and B are finite =⇒ A ∪B = finite and hence A ∪B ∈ A;

2. If at least one is cofinite =⇒ A ∪B = cofinite

Therefore, A is a field.

Example 1.3 (Subsets of R). Let Ω = R,A = {(−∞, x], x ∈ R}. Let A ∈ A, B ∈ A. Then we
have A ∪B = (∞,max(x1, x2)] ∈ A =⇒ A is closed under finite union.
However, Ac = (x1,∞) /∈ A =⇒ not closed under complementation, hence not a field.

1Parthasarathy, K. R. An introduction to quantum stochastic calculus.
2We are using the word “small” in the sense that the number of sets in the field.
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Definition 1.4 (σ−field) A nonempty class F of subsets of of Ω is called a σ−field if

(i) if for every A ∈ F , Ac ∈ F (closed under complementation);

(ii) for every sequence of sets {An}, An ∈ F ,
⋃
An ∈ F (closed under countable union)

If F is a σ-field it implies F is a field. Is the converse true? NO! Lets go back to example (1.2),
we already proved A is a field. Consider An = {x2n}, An ∈ F but

⋃∞
n=1An = {x2, x4, ...} /∈ F .

Why? since the complement of
⋃∞

n=1An is a set of all odd elements, which is also infinite,⋃∞
n=1An is neither finite or cofinite.

§1.2 The σ-field generated by a given class C
We now turn our attention to how sigma fields are constructed, and how to guarantee a desired
sigma field exists.
Lets say we have an indexed family of subsets of Ω: {Ct : t ∈ T}, T is an index set, such that for
each t ∈ T , Ct is closed under countable unions. 3 Then

C =
⋂
t∈T

Ct is closed under countable unions.

⋆ If we have a sequence of nested sets in Ω. Suppose that {Fn} are all σ-fields. We can show that
⋃

n∈N Fn

is a field. However, suppose that {Fn} are all σ-fields.
⋃

n∈N Fn may not be a σ-field.

Proof. Complete the proof.Important for
midterm!

Proposition 1.5 (Intersection of σ-algebras). If F ,G ⊆ 2Ω are σ-algebras on Ω, then their
intersection F ∩ G is also a σ-algebra. This also holds for infinite intersections.

Proof. Straightforward, verify the σ-algebra properties directly.

Definition 1.6 (σ−field generated) Given a collection of subsets G ⊆ 2Ω, we define σ-algebra
generated by G to be the smallest σ-algebra containing G, i.e.,

σ(G) =
⋂

G⊆F⊆2Ω

F is a σ-algebra

F

Here is a collection of useful and somewhat related facts. Let C be a collection of subsets of Ω:

⋆ σ(C) ⊃ C

⋆ If B is some other σ-field containing C, then B ⊃ σ(C)

⋆ If A is a subset; then σ(A) = {∅, A,Ac,Ω}

⋆ If Ω = R (or more generally if Ω is a space with a topology), the Borel σ-algebra is the
σ-algebra generated by the open sets (or by closed sets, which is equivalent).

Example 1.7 (Borel sets). Let C be the class of sub-intervals of Ω = (0, 1], and define B = σ(C).
The elements of B are called Borel sets of the unit interval. B contains the open sets in (0, 1].

3This is NOT true for
⋃

t∈T Ct
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§1.3 Probability Measure

Definition 1.8 A set function is a function defined on some class of subsets of Ω. A set
function P is a probability measure if it satisfies the following conditions

(i) 0 ≤ P(A) ≤ 1 for A ∈ F

(ii) P(Ω) = 1;P(∅) = 0

(iii) P is additive: if A1, A2, ... is a sequence of disjoint events then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) (1)

5
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§2 September 12, 2022

§2.1 Properties of probability measure

Proposition 2.1 (Countable sub-addivity property of probability measures). For any sequence
A1, A2, ... ∈ F (whether disjoint or not), we have by

P

⋃
j

Aj

 ≤
∑
j

P(Aj)

Proof. Let B1 = A1, Bj = Aj/ ∪j−1
k=1 Ak. This implies that P(∪jAi) = P(∪jBj) =

∑
j P(Bj) ≤∑

j P(Aj).

Given a probability triple (Ω,F ,P), and sequence of events, A,A1, A2, ... ∈ F , the notation
Ai ↑ A means that A1 ⊆ A2... and

⋃
iAi = A. In words, the events Ai increase to A. Likewise,

we use the notation Ai ↓ A to mean that {AC
i } ↑ AC , or equivalently that A1 ⊇ A2 ⊇ A3 ⊇ ...,

and
⋂

iAi = A. In words, the events Ai decrease to A.

Proposition 2.2 (Continuity of probabilities). If Ai ↑ A or Ai ↓ A, then limn→∞ P(An) = P(A).

Proof. Suppose that Ai ↑ A. Let B1 = A1, Bi = Ai ∩ AC
i−1 for i > 1. It follows that {Bi} are

disjoint, with
⋃

iBi =
⋃

iAi = A. Thus,

P (A) = P

(⋃
i

Bi

)
=

∞∑
i

P(Bi) = lim
n→∞

n∑
i

P(Bi) = lim
n→∞

P

(
n⋃
i

Bi

)
= lim

n→∞
P(An)

Note: = holds from the fact that {Ai} are nested sequence.

From the proof we can see that if {Ai} are not nested, then = may not hold, and thus we
many not have limn→∞ P(An) = P(A).

Theorem 2.3 (Part of Borel-Cantelli Lemma) — Let A1, A2, ... ∈ F . If
∑

j P(Aj) <∞, then

P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= 0

§2.2 Borel sets

Proposition 2.4. Let Ω0 ⊂ Ω.

1. If B is a σ−field of subsets of Ω, then B0 := {A ∩ Ω0 : A ∈ B} is a σ−field of subsets of Ω0

§2.3 Extension theorem

Motivation for Extension theorem. How can we formally define a probability triple (Ω,F ,P)
which corresponds to the uniform distribution? Clearly we should choose Ω = [0, 1]. But what
about F? We know that F cannot contain all interval of [0, 1], but it should certainly contain
intervals [a, b], [a, b), etc. The construction of F and P is a challenge. To deal with them we prove
a very general theorem about constructing probability triples.

Before leaping into technical details of the Extension Theorem, its useful to think about what
the theorem is trying to accomplish. In many cases its difficult to define a probability function
P(·) on all sets of a σ−algebras.
The Extension theorem is a method of constructing complicated probability triples on full

σ-algebras, using only probabilities defined on much simpler subsets.
Let Ω = [0, 1], and I = {(a, b] : 0 ≤ a < b ≤ 1}. Let B0 be a field generated by I. Let

6
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λ([a, b]) = b− a extend to B0 by finite additivity 4. Then we make the following two claims:
Claim 1: λ is finitely additive probability on B0 called Lebesgue probability
Claim 2: ∃! unique extension to probability on B = σ(I)

Theorem 2.5 (Extension theorem) — Suppose that P is a probability measure on a field F0

of subsets of Ω, and let F = σ(F0) Then there exists a probability measure Q(·) on F such
that Q(A) = P(A) for A ∈ F0

a. Further, if Q∗ is another probability measure on F such
that Q∗(A) = P(A) for A ∈ F0, then Q

∗(A) = Q(A) for A ∈ F .

aAlthough the measure extended to F is usually denoted by the same letter as the original measure on F0,
they are really different set functions, since they have different domains of definition.

§2.4 Outer Measure

Definition 2.6 (Outer Measure) Let P be a probability function on field F . For any A ∈ Ω,
let

P∗(A) = inf
A⊆

⋃
i Ai

∑
i

P(An)

An alternative notion we could use is

P∗(A) = inf

{∑
i

P(An) | A ⊆
⋃
i

Ai

}

In other words, we are choose a collection of A1, A2, ... ∈ B0 which covers A and minimizes the
sum

∑
i P(An). What do we get from doing this? For any set A ⊆ Ω, we can define a probability

through using P.

Proposition 2.7. The outer probability measure function P∗ satisfies the following properties.

(i) Empty set. P∗(∅) = 0.

(ii) Non-Negativity. P(A) ≥ 0 for all A ⊆ Ω.

(iii) Monotonicity. A ⊂ B implies P∗(A) ≤ P(B).

(iv) Countable Sub-additivity. P
(⋃

i∈NAi

)
≤
∑

i∈N P∗(Ai)

Proof. (i) holds since ∅ is covered by itself, and has probability measure P(∅) = 0. (ii) follows
from the fact that P(·) is non-negative. (iii) P∗(·) is monotone, if A ⊂ B, then the infimum of P∗(A)
includes choices of {Ai} which work for P(B)∗ plus many more besides that, so P∗(A) ≤ P∗(B).
(iv) We prove the fourth property below. For any ε and any n we construct a sequence of sets
Bnk, k ∈ N such that An ⊂

⋃
k Bnk and that

∑
k P(Bnk) ≤ P∗(An) + ε2−n. Such a construction

is possible since P∗ is defined as the infimum of all possible coverings.

4A set function µ is finitely additive, if given any finite disjoint collection of sets {A}ni=1 on which µ is defined,
µ
(⋃n

i=1 Ai

)
=

∑n
i=1 µ(Ai)
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§3 September 14, 2022

§3.1 Construction of the Extension

We set
M = {A ⊆ Ω | P∗(A ∩ E) + P∗(Ac ∩ E) = P∗(E),∀E ⊆ Ω} (2)

That is, M is set of all subsets A with the property that P∗ is additive on the union of (A ∩ E)
and (Ac ∩ E) for all subsets E, i.e.,

P ((A ∩ E) ∪ (Ac ∩ E)) = P∗(A ∩ E) + P∗(Ac ∩ E) = P(E).

Since E = (A ∩ E) ∪ (Ac ∩ E). Note that by sub-additivity, we always have P(E) ≤ P∗(A ∩ E) +
P∗(Ac ∩ E), thus (2) is equivalent to

SM = {A ⊆ Ω | P∗(A ∩ E) + P∗(Ac ∩ E) ≤ P∗(E),∀E ⊆ Ω} (3)

Proposition 3.1 (P∗ is countably additive on M). If A1, A2, ... ∈ M are disjoint, then
P∗ (

⋃
nAn) =

∑
n P∗(An)

Proposition 3.2. Set set M is a σ-algebra

§3.2 Uniqueness and π − λ system

Definition 3.3 (π-system) A set of sets C is called a π−system if the following holds:

A,B ∈ C, =⇒ A ∩B ∈ C

It follows from induction that for a π−system C, if A1, ..., An ∈ C, then we have A1 ∩ ...∩An ∈ C.

Definition 3.4 (λ-system) A set of sets C is a π−system if it satisfies

(i) Ω ∈ C

(ii) A ∈ C =⇒ Ac ∈ C

(iii) An ∈ C, n ∈ N and An ∩An = ∅ for n ̸= m =⇒ ∩nAn ∈ C

Proposition 3.5. A set of sets that is both a π−system and a λ is a σ-algebra.

Proposition 3.6 (Dynkin’s Theorem). If C is a π-system, and D is a λ−system. Then C ⊆
D =⇒ σ(C) ⊂ D

§3.3 Lebesgue Measure

Theorem 2.5 allows us to automatically construct valid probability triples. We can use this to
construct the Uniform[0, 1] distribution. The Lebesgue measure is a measure function λ on the
interval Ω = (0, 1] that agrees with our intuitive notion of length. 5 Consider the unit interval
(0, 1] together with the field B0 of finite disjoint unions of sub-intervals and the σ−field B = σ(B0)
of Borel sets in (0, 1].

λ(A) =

k∑
i=1

|bi − ai| where A =

k⋃
i=1

(ai, bi)

By Theorem 2.5, λ extends to B, the extended λ being Lebesgue measure. The probability
space ((0, 1],B, λ) will be the basis for much of the probability theory.

5The Lebesgue measure can be defined on different types of intervals (a, b), [a, b], or [a, b) in accordance with the
definition above.
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§4 September 19, 2022

§4.1 Limit Events

Definition 4.1 (Limit) For a given sequence of subsets A1, A2, ... ⊆ Ω, we define

lim sup
n

An =

∞⋂
n=1

∞⋃
k=n

Ak = {ω : ω ∈ An infinitely often}

= {ω : ω ∈ Ank
, k = 1, 2, ..}

for some subsequence nk depending on ω , and

lim inf
n

An =

∞⋃
n=1

∞⋂
k=n

Ak = {ω : ω ∈ An all but finitely many n’s}

= {ω : ω ∈ An,∀n ≥ n0(ω)}

The limit of a sequence of sets is defined as follows:

lim
n→∞

An := lim sup
n

An = lim inf
n

An

Note that ω lies in 4.1 if and only if for each n there is some k ≥ n for which ω ∈ Ak; in other
words, ω lies in lim supnAn if and only if it lies in infinitely many of the An. In the same way ω
lines in lim infnAn if and only if there exists some n such that ω ∈ Ak for all k ≥ n; in words, ω
lies in lim infnAn (4.1) if and only if it lies in all but finitely many of the An

6.

• (lim supnAn)
C = lim infn(A

C
n ) therefore P(An i.o) = 1− P(AC

n a.a)

• Note that
⋃∞

k=nAn ↓ lim supnAn;

• and
⋂∞

k=nAn ↑ lim infnAn

For example, suppose want to model infinite coin tossing, let (Ω,F ,P) is infinite fair coin tossing.
Then Ω = {(r1, r2, . . . ) : ri = 0 or 1}, is the collection of all binary sequences, and let Hn be the
event the nth coin is heads.

Proposition 4.2. The relationship between lim sup and lim inf is

lim inf
n→∞

An ⊂ lim sup
n→∞

An

Proof. (Obvious fact!) If ω ∈ An, for all but finitely many An, then certainly, ω ∈ An infinitely
many times.

Theorem 4.3 (Fatou’s) — For each sequence {An}, we always have that

(i) P (lim infnAn) ≤ lim infn P (An) ≤ lim supn P (An) ≤ P (lim sup nAn)

(ii) If An → A, then P(An) → P(A)

Proof. The middle inequality is obvious. Prove this!

6Note that facts about limits inferior and superior can usually be deduced from the logic they involve more easily
than by formal set-theoretic manipulations

9



September 19, 2022 Probability Theory I, Hanan Ather

Corollary 4.4

If {An, n ≥ 1} is sequence of events, then

lim
n→∞

P(An) = P
(
lim
n→∞

An

)
(when both exist)

Proof. Prove this!

Example 4.5. Let the following two conditions be true:{
P (lim supn→∞An) = P (lim infn→∞Bn) = 1

P (lim supn→∞An) = P (lim supn→∞Bn) = 1

what is P [lim sup(An ∩Bn)]

Proof. The first equation is the stronger,

P
(
lim inf
n→∞

Bn

)
= 1 =⇒ P

(
lim sup
n→∞

Bn

)
= 1

If ω ∈ lim inf Bn =⇒ ∃N s.t, ∀n > N, ω ∈ Bn. Now if ω ∈ lim supAn =⇒ ∃ an infinite
sequence {n(k)}k∈N such that ω ∈ An(k)

Let ω ∈ {An(k) ∩Bn(k)} for n(k) > N , this implies that ω ∈ lim sup(An ∩Bn)

§4.2 Independence

• Two events A and B are independent if P(A ∩B) = P(A) · P(B)

• Two random variables X and Y are independent if for all C,D ∈ ℜ,

P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B)

• Two σ−fields are independent if for all A ∈ F and B ∈ G the events A and B are independent

Definition 4.6 (Independence) More generally, a finite collection A1, ..., An of events is
independent if

P(Ak1
∩ · · · ∩Akj

) = P(Ak1
) · · ·P(Akj

)

for 2 ≤ j ≤ n and 1 ≤ k1 < · · · < kj ≤ n. An infinite collection of events is defined to be
independent in each of its finite sub-collections is independent.

Note that the above equation actually represents
∑n

k=2

(
n
k

)
= 2n − n− 1 equations.

⋆ It is not enough to assume that P (Ai ∩Aj) = P(Ai)P(Aj) for all i ̸= j. A sequence with this property is
called pairwise independent. Its obvious that independent events are pairwise independent. But the
converse is not true!

In analogy with independence of events we can define the independence of two random vectors
and more generally, that of two σ-algebras

Definition 4.7 (Independent collection) Let Si ⊆ F for i = 1, 2, . . . , n. The classes Si are
independent, if for any choice A1, A2, . . . , An with Ai ∈ Si the events A1, A2, . . . , An are
independent.

This is useful theorem for proving if two sigma fields are independent.

10
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Theorem 4.8 — Let S1, S2 be independent fields. Then σ(S1), σ(S2) are independent
algebras. Additionally, if Si for each i = 1, 2, . . . , n are just classes of events satisfying

1. Si is a π−system

2. Si, i = 1, 2, . . . , n are independent

then, σ(C1), · · · , σ(Cn) are independent.

Proof. The sketch for the proof: We start with fixing A2 ∈ S2 for n = 2, and show

L = {A ∈ Ω : P(A ∩A2) = P(A) · P(A2)}

is a λ−system. And apply Dynkin’s theorem which implies that L ⊃ S1 =⇒ L ⊃ σ(S1)

§4.3 Borel-Centelli

The Borel-Cantelli lemma is a theorem about sequences of events. The lemma basically says that
under certain conditions, an event will have probability either 0 or 1. It belongs to a class of
theorems known as Zero-One laws7 .

Lemma 4.9 (Borel-Cantelli Lemma) — Let A1, A2, · · · ∈ F

(i) If
∑∞

n=1 P(An) <∞, then, P(lim supnAn) = 0

(ii) If
∑∞

n=1 P(An) = ∞, and {An} are independent, then P(lim supnAn) = 1

Proof. Prove this!

The theorem asserts that if the sum of the probabilities of events is a finite number, then the set
of all outcomes that occur infinitely often must be 0.

7Kolmogorov’s zero–one law and the Hewitt–Savage zero–one law

11
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§5.1 Tail σ-fields

Definition 5.1 (Tail σ−fields) Given a sequence of events A1, A2, ... in a probability space
(Ω,F ,P) we define their tail field by

τ =

∞⋂
n=1

σ(An, An+1, An+2, ...).

Or equivalently,

τ = F ({Aj}j∈N) ≡
∞⋂

n=1

σ({Aj}j≥n)

This is the tail σ− field associated with the sequence {An}, and its elements are called tail events.
In words, an event B ∈ τ must have the property that for any n, it depends only on the events
An, An+1, ...; it does not care about any finite number of events An.
Consider tossing a fair coin infinitely many times, and let Hn be the event that nth coin comes
up heads. Then {lim supnHn} is the event that we obtain infinitely many heads. 8 On the other
hand, {lim infnHn} is the event that we obtain only finitely many tails.

Example 5.2. Since lim supnAn =
⋂∞

n=1

⋃∞
k=nAk, and lim infn

⋃∞
n=1

⋂
k≥nAn are both in

σ(An, An+1, An+2, ...), limit superior and limit inferior are tail events for the sequence {An}.

Proof. For all N ∈ N, lim supnAn =
⋂∞

n=1

⋃
k≥nAk =

⋂∞
n=N

⋃
k≥nAk ∈ τ

§5.2 Kolmogorov’s Zero-One Law

Incomplete!!!

Theorem 5.3 (Kolmogorov’s Zero-One Law) — For a sequence A1, A2, . . . of events in a
probability space (Ω,F ,P) with a tail-field τ , and if A ∈ τ , then P(A) = 0 or 1.

§5.3 Random Variables

Let (Ω,F ,P) be an arbitrary probability space, and let X be a real-value function on Ω; X is a
simple random variable if it takes finitely many values S, and

[ω : X(ω) = s] = X−1(s) ∈ F , ∀s ∈ S

Whether or not X satisfies this condition only depends on F , not on P. A finite sum

X =
∑
i

xiIAi

is a random variable if the Ai form a finite partition of Ω into F-sets. If G is a sub-σ-field of F

Proposition 5.4. Let X1, ..., Xn be simple random variables.

1. The σ-field σ(X1, ..., Xn) consists of the sets

{ω : (X1(ω), ..., Xn(ω)) ∈ H}

8Billingsley’s defines this much more rigorously
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Definition 5.5 (Random variable) Let (Ω,F) and (S,S) be two measurable spaces. A function
X : Ω 7→ S between is Random variable (R.V) if

X−1(B) := {ω : X(ω) ∈ B} ∈ F

for every B ∈ S. This is also the definition of a measurable mapping a. A real-valued
random variable X is a function from Ω to R such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F , x ∈ R

which can be written as {X ≤ x} ∈ F or X−1((∞, x]) ∈ F .

aIf Ω is a topological space and F = σ({O ⊆ Ω open}) is the corresponding Borel σ−algebra, we say that
X : Ω 7→ R is a Borel function

⋆ Requirement of wanting pre-images of a measurable function to be in F comes from how we will soon
define the Lebesgue Integral. Lets say we have an indicator function IA. The

∫
Ω IA(ω)dP(ω) = P(f−1({1}))

should equal to the measure of the set A. Hence the pre-image of any set, f−1(A) ∈ F (i.e., shoudl be
measurable)

As we can see random variables are just measurable functions that get special notation. Lets say
we have an random variable Y , and we would like to know the probability it lies between the
interval a and b. The rigorous way to express this would be

P(Y −1([a, b])) = P({ω ∈ Ω | Y (ω) ∈ [a, b]})

This is a bit cumbersome, which is why the notation “Y ∈ B” gets used to express the same
thing as Y −1(B). Therefore, we have

P(Y −1([a, b])) = P(Y ∈ [a, b])

Proposition 5.6. Let X and Y be independent random variables. Let f, g : R → R be
Borel-measurable functions. Then the random variables f(X) and g(X) are independent.

Proof. Complete this We want to show that

P(f(X) ∈ S1, g(Y ) ∈ S2) = P(f(X) ∈ S1) · P(g(Y ) ∈ S2)

Proposition 5.7. LetX and Y be two random variables, defined jointly on some probability triple
(Ω,F ,P). Then X and Y are independent if and only if P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)
for all x, y ∈ R.

§5.4 σ-algebras induced by Inverse Maps

Definition 5.8 Given a function X : Ω → R we denote σ(X) as the smallest σ−algebra F
such that X(ω) is a measurable mapping from (Ω,F) to (R,B). Alternatively,

σ(X) = σ({ω ∈ Ω : X(ω) ∈ B}, B ∈ B)
⇔ σ(X) = {{X ∈ B}︸ ︷︷ ︸

=X−1(B)

: B ∈ B}

⇔ σ(X) = X−1(B)

Extreme Example: Let X(ω) = 17 for all ω. This mean that

σ(X) = {{X ∈ B} : B ∈ B}
= σ(∅,Ω)

13
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Less Extreme Example: Suppose that X = IA for some A ∈ F , then X has range of {0, 1} . Then

X−1({0}) = AC , X−1({1}) = A

and therefore,
σ(X) = {∅,Ω, A,AC}

The results below states that a map between spaces where one of the spaces is measurable
implicitly define a σ-algebra on the other one

Theorem 5.9 (σ-algebras Induced by Inverse Maps) — Let f : X → Y be a map, and X and
Y are non-empty sets.

1. If B is a σ-algebra on Y , then

σ(f) = f−1(B) = {f−1(B) : B ∈ B}

is a σ-algebra on X

2. If F is a σ-algebra on X, then

{B ⊆ Y : f−1(B) ∈ F}

is a σ-algebra on Y.

3. A is a colleciton of sets in Y, then

σ(f−1(A)) = f−1(σ(A))

The σ-algebra S can be huge, so its useful to know that we can verify that a given mapping is
measurable without the need to check that the pre-image X−1(B) is in F for every B ∈ S. It
suffices to do this for a collection (of our choice) of generators of S.

Theorem 5.10 — Suppose that (Ω,F) and (S,S) are two measurable spaces, and S = σ(A)
is generated by the collection of sets A in S. Then X : Ω → S is a measurable if and only if

X−1(A) ∈ F for every A ∈ A

Proof. Based on the following facts:

1. X−1(S \B) = Ω \X−1(B)

2. X−1 (
⋃∞

i=1Bi) =
⋃∞

i=1X
−1(Bi)

It follows that
M = {B ⊆ S : X−1(B) ∈ F}

σ-algebra on S. By assumption M ⊃ A and therefore, M ⊃ σ(A) = S, which implies that X is
measurable

Alternatively, A function f defined on a measurable subset E of Rd is measurable if for all
a ∈ R

f−1([−∞, a)) = {x ∈ E : f(x) < a}

is measurable.

14
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Definition 5.11 If (Ω,F) is a measurable space, then

• X : Ω → R is measurable if X−1(B) ∈ F for every Borel set B ∈ B(R).

• A function X : Rn → R is Lebesgue measurable if X−1(B) is a Lebesgue measurable
subset of Rn for every Borel subset B of R

• A function X : Rn → R is Borel measurable if X−1(B) is a Borel measurable subset
of Rn for every Borel subset B of R.

Proposition 5.12. If (Ω,F) is a measurable space, then X : Ω → R is a measurable function if
and only if one of the following conditions holds:

{ω ∈ Ω : X(ω) < x} ∈ F for every x ∈ R
{ω ∈ Ω : X(ω) ≤ x} ∈ F for every x ∈ R
{ω ∈ Ω : X(ω) > x} ∈ F for every x ∈ R
{ω ∈ Ω : X(ω) ≥ x} ∈ F for every x ∈ R

15
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§6.1 Existence of i.i.d Sequences

We started this lecture the remark that proving the existence of i.i.d sequences is tricky, and
usually done towards the end of most Probability textbooks.

Theorem 6.1 — Assume Xn ∼ Fn (independently distributed), assume F−1
n exists. We

fix a sequence of random variables {Fn}n∈N. There exists independent sequence of random
variables {Xn}n∈N where Xn ∼ Fn.

a

aWe fixing the the sequence of distributions

§6.2 Kolmogorov’s Extension Theorem

Let

Bn = σ ({A1 ×A2 × · · · ×An}Ai∈B)

= σ ({[a1, b1]× [a2, b2]× · · · × [an, bn]}) where ai < bi ∈ Q

Then we have
BN = σ ({A1 ×A2 × · · · ×An × R× · · · })

Theorem 6.2 (Kolmogorov’s Extension Theorem) — Suppose we are given sequence of
probability measures {µ}n∈N on (Rn,BN ), on a ”growing probability space”a.

µn+1({A1 ×A2 . . . An × R}) = µn+1({A1 ×A2 . . . An})

There exists a (unique?) measure µ on (BN,RN) such that

µn({A1 ×A2 . . . An × R× R× · · · }) = µn({A1 ×A2 . . . An})
averify what this means

Example 6.3 (Example from). Let F1, F2, . . . be distribution functions and let µn be the measure
on Rn with

µ ({[a1, b1]× [a2, b2]× · · · × [an, bn]}) =
n∏

m=1

(Fm(bm)− Fm(am))

§6.3 Measurable maps and R.V’s

Theorem 6.4 — If X : (Ω1,F1) → (Ω2,F2) and f : (Ω2,F2) → (Ω3,F3) are all measurable
maps then f(X) is a measure map from (Ω,F) → (Ω3,F3).

Proof. (X ◦ f)−1(A3) = X−1 (f−1(A3)︸ ︷︷ ︸
∈F2

) =⇒ Since X is a measurable map,

X−1(f−1(A3) ∈ F1

Theorem 6.5 — If f is a continuous function, it is measurable.

Proof. prove this

16
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Given collection of real-valued functions {fi}∞i=1, we define new functions by specifying their
values at each x ∈ R.

inf
i
fi(x) = inf fi(x) = inf

i
{fi(x)}

sup
i
fi(x) = sup fi(x) = sup

i
{fi(x)}

lim sup
i

fi(x) = lim sup fi(x) = inf
j>1

sup
i>j

{fi(x)}

lim inf
i

fi(x) = lim inf fi(x) = sup
j>1

inf
i>j

{fi(x)}

Theorem 6.6 — If X1, X2, . . . are random variables then so are

inf
n
Xn sup

n
Xn lim sup

n
Xn lim inf

n
Xn

Proof. Let g = supnXn so for each i, Xi(ω) ≤ g(ω) for all ω ∈ Ω. Fix a ∈ R+ and observe that

{ω : max{X1(ω), X2(ω)} > a} = {ω : X1(ω) ≥ a}
⋃

{ω : X2(ω) ≥ a}

The set of ω’s that supnXn > a is equal to the union of all the sets of ω’s where Xi > a for all
i ∈ N

§6.4 Almost Sure Convergence

Point-wise convergence of R.V. i.e. (Xn(ω) → X(ω) for every ω ∈ Ω) is often too strong of a
requirement, since the R.V. may not be defined on sets of zero measure.

Definition 6.7 A sequence of measurable functions or random variables {Xn} on the same
probability space (Ω,F ,P) converge almost surely to X if

P(ω ∈ Ω : lim
n→∞

Xn = X) = 1

Another way to define almost sure convergence is:
Two R.V’s X and Y are almost surely the same if P({ω : X(ω) ̸= Y (ω)}) = 0

Lemma 6.8 — If P[{|Xn −X| ≥ ε} i.o] = 0, then Xn
a.s→ X.

Proof. Let A = {ω ∈ Ω : limn→∞Xn(ω) ̸= X}. Then for all ω ∈ A, ∃δ > 0, n(k) such that
|Xn(k)(ω)−X(ω)| > δ for all k ∈ N. But then |Xn(ω)−X(ω)| > 1

n i.o, so

ω ∈ B ≡ {|Xn −X| ≥ 1

n
i.o} =⇒ P(A) ≤ P(B) = 0

17



September 28, 2022 Probability Theory I, Hanan Ather

§7 September 28, 2022

§7.1 Convergence in Probability

Recall: “Xn →
a.s

X” ⇔ P({ω : Xn(ω) → X(ω)}) = 1

Definition 7.1 (Convergence in Probability) Suppose that {Xn}n≥1 and X are random

variables. Then {Xn} converges in probability to X, written Xn
p→ X, if for any ε > 0

lim
n→∞

P[|Xn −X| > ε] = 0

• Almost sure convergence of {Xn} demands that for “almost all” ω, Xn(ω) − X(ω) gets
small

• Xn(ω) fails to converge to X(ω) if and only if there is some ε such that for no m does
|Xn(ω)−X(ω)| below ε for all n exceeding m

• Convergence in probability is weaker and merely requires that all the probability of the
difference Xn(ω)−X(ω) becomes small

Theorem 7.2 (Convergence a.s implies convergence in probability) — Suppose that {Xn}n≥1

and X are random variables on a probability space (Ω,F ,P). If

Xn → X, almost surely (a.s)

then
Xn

p→ X

Proof. If Xn
a.s→ X, it means the set of points A = {ω : limXn(ω) ̸= X(ω)} has probability 0.

Lets fix ε > 0, define

An =
⋃

m≥n

{ω : |Xm(ω)−Xn(ω)| > ε}

Clearly An’s are monotonically decreasing, i.e., An ⊃ An+1 ⊃ An+2 · · · , and they are decreasing
towards the set

A∞ =
⋂
n≥1

An

For these decreasing sequence of sets, their probabilities are also a decreasing sequence, and the
probabilities are decreasing to P(A∞); we will show that P(A∞) = 0. Now for any point ω in
the complement of A is such that limXn(ω) = X(ω), which implies |Xn(ω)−X(ω)| < ε for all n
greater than a number N . Therefore, for all n ≥ N , ω will not belong to An, and consequently
will not belong to A∞. This implies that Ac and A∞ are disjoint events, which in turn implies
that A∞ is a subset of A which implies that P(A∞) = 0. By continuity from above, we have
limP(An) = P(A∞) = 0, and

P(|Xn −X)| > ε) ≤ P(An) → 0, n→ ∞

Second Proof:
If Xn → X a.s. then for any ε > 0,

0 = P([|Xn −X| > ε]i.o) =

Example 7.3. Let Xn ∼ Bern( 1n ). Fix δ > 0.

P(|Xn| > δ) ≤ P(Xn = 1) =
1

n
→ 0, n→ ∞

18
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This implies that Xn
p→ 0. Now we have

P
(
|Xn| >

1

2

)
=

1

n
=⇒

∞∑
n=1

(
|Xn| >

1

2

)
= ∞

By Borel-Cantelli lemma

P
(
|Xn| >

1

2
i.o

)
= 1

therefore, this sequence of variables does not converge almost surely.

§7.2 Summary of convergences

Let X1, · · · , Xn be random variables on some probability space (Ω,F ,P). We say:

(a) Xn → X almost surely, written Xn
a.s→ X, if {ω ∈ Ω : Xn(ω) → X(ω) as n → ∞} is an

event with probability 1.9

(b) Xn → X in rth mean, where r ≥ 1, written Xn
r→ X, if E[Xr

n] <∞ for all n and

E(|Xn −X|r) → 0 as n→ ∞,

(c) Xn → X in probability, written Xn
p→ X, if

P(|Xn −X| > ε) → 0 as n→ ∞, for all ε > 0,

(d) Xn → X in distribution, written Xn
D→ X, if

P(Xn ≤ x) → P(X ≤ x) as n→ ∞

There are several notations for Xn
a.s→ X. They include Xn → X almost everywhere, or Xn

a.e→ X,
or Xn → X with probability 1. We can check using the Minkowski’s inequality that

∥ Y ∥r= (E|Y r|) 1
r =

(∫
|y|rdFY

) 1
r

define a norm on the collection of random variables with a finite rth moment, for any any value
of r ≥ 1. Its obvious that these four modes of convergence are not equivalent to each other.
Convergence in distribution is the weakest, sine its a condition only on distribution functions of
Xn, that is, it contains no reference to to the sample space Ω, and no information regarding the
independence or dependence of Xn.

Example 7.4. Let X be a Bernoulli variable taking values 0 and 1 with equal probability 1
2 .

Let X1, X2 · · · be identical random variables given by Xn = X for all n. The Xn are clearly not

independent, but Xn
D→ X. Let Y = 1 −X. Certainly Xn

D→ Y also, since X and Y have the
same distribution. However, Xn cannot converge to Y is any other mode because |Xn − Y | = 1.

§7.3 Lebesgue Integral

We define expectation for all simple positive random variables and then for all (0,∞)−valued
random variables. Let

SF+ := {X ≥ 0 : X : (Ω,F) 7→ (R,B(R))}

be non-negative, measurable functions with domain Ω. We fix measure space (Ω,F ,P) and we
define the E(X) by the following four step procedure.

1. For A ∈ F , define µ0(IA) := P(A)
9we do not require the whole space Ω, but rather that its complement, is a null set

19
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2. For any f ∈ SF+, has a representation f =
∑n

j=1 ajIAj
; for some finite n <∞, and cj > 0,

which gives us the definition of the integral

µ0(f) =

n∑
j=1

ajP(Aj)

3. for all random variables X ≥ 0, we define

E[X] := sup{µ0(f) : f ∈ SF+, f(ω) ≤ X(ω)}

⇔ E[X] = sup{E[Y ] : Y is simple , Y (ω) ≤ X(ω)}

4. For X, let X+ = max(X, 0) and X− = max(−X, 0), then E[X] = E[X+]− E[X−]

⋆ Expectation E[X] of a random variable X on a probability space (Ω,F ,P) is just the Lebesgue integral∫
X(ω)dP(ω) of X with respect to P

The expected value of a simple random variable is defined as

E[X] = E

[∑
i

xiIAi

]
=
∑
i

xiP(Ai)

or in the alternative form
E[X] =

∑
x

xiP[X = x]

where the sum is extending over the range of X; We derive some important properties of µ0 from
our definition. In particular want to to prove µ0 is invariant, linear and monotone.

Lemma 7.5 — µ0 is ”well-defined”

(a) µ0(φ) = µ0(ψ) if φ,ψ ∈ SF+ and µ0({ω : φ(ω) = ψ(ω)}) = 0

(b) µ0 is linear, that is µ0(φ+ ψ) = µ0(φ) + µ0(ψ)

(c) µ0 is monotone that is, for all ω ∈ Ωφ(ω) ≤ ψ(ω) ⇔ µ0(φ) ≤ µ0(ψ)

Theorem 7.6 (Monotone Convergence Theorem) — Suppose that X1, X2, ... are random
variables and 0 ≤ {Xn(ω)}∞n=1 ↑ X(ω) for all ω ∈ Ω, then X is a random variable

E[Xn] ↑ E[X] ⇔ lim
n→∞

E[Xn] = E[X]

Lemma 7.7 — Now we prove a similar lemma for expectations:

(a) The mathematical expectation is is well-defined E(φ) = E(ψ) if φ,ψ ∈ SF+ and
E({ω : φ(ω) = ψ(ω)}) = 0

(b) Expectation is a linear operation, that is E(φ+ ψ) = E(φ) + E(ψ)

(c) E is monotone that is, for all ω ∈ Ω φ(ω) ≤ ψ(ω) ⇔ E(φ) ≤ E(ψ)

Relation to Riemann Integral. Let f : [a, b] → R be a Riemann integrable function, where
[a, b] is equipped with Borel measure. Then f is also Lebesgue integrable, and the integrals agree:∫ b

a

f(x)dx =

∫
[a,b]

fdµ

20
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Thus in practice we do all theory with Lebesgue integrals, since they are nicer, but when we need
to actually compute anything, we revert back to the fundamental theorem of calculus.
There are three “big” theorem for exchanging limits with Lebesgue integrals:

1. Monotone convergence theorem

2. Fatou’s Lemma: most general statement since it can be applied to any non-negative
measurable function

3. Dominated Convergence theorem 10: bounded by some absolutely integrable functions (i.e,
limits are not too big)

10Bounded convergence theorem is a special case of dominated convergence
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§8.1 Important properties of Lebesgue integrals

Theorem 8.1 (Beppo-Levi) — Let {Xn} be a sequence of monotone (increasing?) random
variables, then

E[sup
n∈N

Xn] = sup
n∈N

E[Xn]∫
sup
n∈N

Xn = sup
n∈N

∫
Xn

Lemma 8.2 — For every R−valued R.V. X(ω) there exists a sequence of simple functions
Xn(ω) such that Xn(ω) → X(ω) (converge point wise).

Proof. Let

Xn(ω) ≡ nIx>n +

n2n−1∑
k=0

k

2n
IX(ω)∈( k

2n , k+1
2n )

Note that:

1. Xn(ω) ≤ Xn+1(ω) ≤ X(ω) for all n ∈ N

2. X(ω)−Xn(ω) = 2−n for all n ∈ N, it follows that Xn(ω) → X(ω).

Theorem 8.3 (Bounded Convergence) — If {Xn} is uniformly bounded, and Xn
a.s→ X, then

E[Xn] → E[X], n→ ∞

Proof. Let C > supn |Xn|, then |X −Xn| ≤ 2C. Fix δ > 0, and let

An{ω : |X(ω)−Xn(ω)| > δ}

. Then
|X(ω)−Xn(ω)| ≤ δIAc(ω) + 2CIAn

(ω) ≤ δ + 2CIAn
(ω), for all ω

This implies that

E[|X(ω)−Xn(ω)|] ≤ δ + 2CE[IAn(ω)] = δ + 2CP[X(ω)−Xn(ω)| > δ]

Since Xn
p→ X, this implies that P(An) → 0, and since δ is arbitrary,

E[|X(ω)−Xn(ω)|] → 0 ⇔ E[Xn] = E[X]

§8.2 Inequalities

Markov’s inequality. Let X be an arbitrary non-negative random variable. Then for all α > 0,

P(X ≥ α) ≤ E(X)

a

Proof. We define a new random variable Z by

Z(ω) =

{
α if X(ω) ≥ α

0 if X(ω) < α
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Clearly Z ≤ X =⇒ E(Z) ≤ E(X) ⇔ αP(X ≥ α) ≤ E(X).

Chebychev’s inequality Let X be an arbitrary random variable with E(X) <∞. Then for
all α > 0,

P(|X − E(X)| ≥ α) ≤ Var(X)

α2

The probability that X differs from its mean by more than α is bounded above by its variance
divided by α2.

Proof. To prove the Chebychev’s inequality we apply Markov’s:

P(|X − E(X)| ≥ α) = P(|X − E(X)|2 ≥ α2) ≤ E(X − E(X))2

α2
=

Var(X)

α2

Jensen’s inequality
Hölder’s Inequality

E[XY ] ≤ E[XP ]
1
p · E[Y q]
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§9.1 Inequalities Continued

Minkowski’s Inequality.

[E(|X + Y |p)]
1
p ≤ [E|X|]

1
p + [E|Y |]

1
p

§9.2 Law of Large Numbers (LLN)

Let X1, . . . , Xn be a sequence of random variables on some probability space (Ω,F ,P). They
are identically distributed if their distributions are all the same. We define Sn = X1 + · · ·+Xn.
We are interested in the asymptotic behaviour of Sn as n→ ∞11. The general problem can be
described as under what conditions does the following convergence occur:

Sn

bn
− an → S as n→ ∞

where a The weak law of large numbers is

Theorem 9.1 (Weak Law of large numbers) —

lim
n→∞

P
(
| 1
n
(X1 + · · ·+Xn)− µ |≥ ε

)
= 0

In words, the partial averages 1
n (X1 + · · ·+Xn) converge in probability to µ. The strong law

of large numbers is:

Theorem 9.2 (Strong Law of Large Numbers) — Let X1, . . . , Xn be independent and
identically distributed (i.i.d) and E(Xi) = m <∞, then,

P
(

lim
n→∞

1

n
(X1 + · · ·+Xn) = µ

)
= 1

Or in other words,
Sn

n

a.s→ m as n→ ∞

In words the partial averages 1
n (X1 + · · ·+Xn) converge almost surely to µ.

Proof. Suppose that Xi are non-negtive random variables with E|X| = E[X1] < ∞, and let
µ = E[Xi]. We ‘truncate’ the Xn to obtain a new sequence {Yn} given by

Yn = XnI{Xn<n} =

{
Xn if Xn < n,

0 if Xn ≥ n.

11this long-term behaviour depends crucially upon the sequence {Xn}

24



25

§10 October 17, 2022

§10.1 Bernstein Approximation Theorem

Theorem 10.1 (Bernstein Polynomial) — Let f : [0, 1] → R be a continuous function on
the interval [0, 1]. The Bernstien polynomial of degree n associated with f is

Bn(x) =

n∑
k=0

f

(
k

n

)(
n

x

)
xk(1− x)n−k

If f is continuous, then Bn(x) converges to f(x) uniformly on [0, 1]. i.e,

sup
x

|f(x)− f(y)| → 0

Proof. Let M = supx |f(x)|, δ(ε) = sup{|f(x) − f(y)| : |x − y| < ε}. Our objective will be to
show that

sup
x

|f(x)−Bn(x)| ≤ δ(ε) +
2M

nε2

By uniform continuity of f , we have limε→0 sup{|f(x)− f(y)| : |x− y| < ε} = 0
Fix: x ∈ [0, 1], and let X1, ..., Xn ∼ Bern(x), Sn = X1 + ...Xn, then

|Bn(x)− f(x)| ≤ E
[
|f
(
Sn

n

)
− f(x)|

]

§10.2 Connections between a.s and i.p convergence

Theorem 10.2 — If

∑
n

P(An) = 0, and lim inf
n→∞

(∑
j,k≤n P(Aj ∩Ak)∑

j≤n P(Aj)2

)
≤ 1,

then P(An, i.o) = 1

Theorem 10.3 — If Xn
p→ X then there exists a subsequence {Xn(k)} such that Xn(k)

a.s→ X.

Lemma 10.4 — If P[{|Xn −X| ≥ ε} i.o] = 0, then Xn
a.s→ X.

Proof. Let A = {ω ∈ Ω : limn→∞Xn(ω) ̸= X}. Then for all ω ∈ A, ∃δ > 0, n(k) such that
|Xn(k)(ω)−X(ω)| > δ for all k ∈ N. But then |Xn(ω)−X(ω)| > 1

n i.o, so

ω ∈ B ≡ {|Xn −X| ≥ 1

n
i.o} =⇒ P(A) ≤ P(B) = 0
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§11.1 Applications of Strong Law of Large Numbers

Example 11.1 (The Glivenko-Cantelli Theorem). As n→ ∞, sup |Fn(x)− F (x)| → 0 a.s.

1(Xm ≤ x) (4)

The next result shows that Fn converges uniformly to F as n→ ∞.
Proof: Fix x and let Yn = 1(X ≤ x). Since the Yn are i.i.d. with EYn = P (Xn ≤ x) = F (x),

the strong law of large numbers implies that Fn(x) =
1
n

∑n
m=1 Ym → F (x) a.s. In general, if Fn

is a sequence of nondecreasing functions that converges pointwise to a bounded and continuous
limit F , then supx |Fn(x)− F (x)| → 0. However, the distribution function F (x) may have jumps,
so we have to work a little harder.

Again, fix x and let Zn = 1(Xn < x). Since the Zn are i.i.d. with EZn = P (Xn < x) = F (x−) =
limy↑x F (y), the strong law of large numbers implies that Fn(x

−) = 1
n

∑n
m=1 Zm → F (x−) a.s.

For 1 ≤ j ≤ k − 1, let xj,k = inf{y : F (y) ≥ j/k}. The pointwise convergence of Fn(x) and
Fn(x

−) imply that we can pick Nk(ω) so that if n ≥ Nk(ω), then

|Fn(xj,k)− F (xj,k)| < k−1 and |Fn(xj,k−)− F (xj,k−)| < k−1 (5)

for 1 ≤ j ≤ k − 1. If we let x0,k = −∞ and xk,k = ∞, then the last two inequalities hold for
j = 0 or k. If x ∈ (xj−1,k, xj,k) with 1 ≤ j ≤ k and n ≥ Nk(ω), then using the monotonicity of
Fn and F , and F (xj,k−)− F (xj−1,k) ≤ k−1, we have

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + k−1 ≤ F (xj−1,k) + 2k−1 ≤ F (x) + 2k−1 (6)

(7)

§11.2 Examples
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The following are equivalent:

• F : R → [0, 1]
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We want to be able to describe the distribution of likelihoods of possible values of X. We can do
this through a distribution function. Recall from Probability 101 that distribution of X evaluated
at x is just the probability that X will taken on a value less than or equal to x. More formally, we
say the distribution or law of the random variable X is the probability measure µ on R,B(R)
defined by

µ(A) = P[X ∈ A], A ∈ B(R)

For simple R.V’s distribution is defined for every subset of the line, however, this is clearly not
the case anymore. From now on µ will be defined only for Borel subsets. The distribution
function of X is the function F : R → [0, 1] defined as

F (x) = µ(−∞, x) = P(X−1(−∞, x)) = P(X ≤ x), x ∈ R

⋆ What is the key difference between a distribution and a distribution function?

Lemma 13.1 — A distribution function F has the following properties:

(a) limx→−∞ F (x) = 0, limx→∞ F (x) = 1

(b) if x < y, then F (x) ≤ F (y),

(c) F is right-continuous, that is F (x+ h) → F (x) as ↓ 0

Proof. (a) Let Bn = {ω ∈ Ω : X(ω) ≤ −n} = {X ≤ −n}. The sequence B1, B2, · · · is decreasing
with the empty set as limit. Thus, P(Bn) → P(∅) = 0.

(b) Let Ax = {ω ∈ Ω : X(ω) ≤ x} = {X ≤ x} ⊆ Ω. Similarly, let Ax,y = {x < X ≤ y}. It follows
that Ay = Ax ∪Ax,y, which is a disjoint union, and by definition of P,

P(Ay) = P(Ax) + P(Ax,y) =⇒ F (y) = F (x) + P(Ax,y) ≥ F (x)

Theorem 13.2 — If F is a non-decreasing, right continuous function satisfying

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

then there exists on some probability space a random variable X for which F (x) = P (X ≤ x)

Proof. First proof

• F is nondecreasing + right-continuous =⇒ measure µ on R,B(R) where µ(a, b] = F (b)−
F (a)

• define φ(u) = inf{x : u ≤ F (x)} and show that its a R.V

Definition 13.3 (Weak Convergence) If Fn and F are distribution functions, Fn converges
weakly to F if

lim
n
Fn(x) = F (x)

for each x which F if continuous

Proposition 13.4. Let Xn ∼ Fn and X ∼ F , assume that Xn
p→ X. We claim that Fn ⇒ F .
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Proof. ∀δ > 0 ∃N(δ) such that for all n ≥ N , P(|Xn −X| > δ) ≤ δ.

F (a) = P(X ≤ a) ≤ P ({Xn ≤ a+ δ} ∪ {|Xn −X| > δ})
≤ P(Xn ≤ a+ δ) + P(|Xn −X| > δ)

≤ Fn(a+ δ) + δ

Therefore, we conclude that
Fn ⇒ F

Lemma 13.5 — If Fn ⇒ F , an → a, and bn → b, then Fn(anx+ bn) ⇒ F (ax+ b)

Proof.

§13.1 Properties of Integral

Theorem 13.6 (Fatou’s Lemma) — For sequence of measurable functions or R.V.’s {Xn} > 0,∫
lim inf

n
Xndµ ≤ lim inf

∫
Xndµ⇔ E

(
lim inf

n
Xn

)
≤ lim inf

n
E(Xn)

Theorem 13.7 (Dominated convergence theorem (DCT)) — If |Xn| ≤ Y almost everywhere,

and Y is integrable, and Xn
a.s→ X, then (i) f and fn are integrable and

∫
Xndµ =

∫
Xdµ

Note in DCT we are not assuming that Xn or X is integrable. Can a non-integrable be dominated
by an integrable function?
The following is is proposition concerning the convergence of sequences of integrable func-

tions.

Theorem 13.8 (Scheffé’s lemma) — Let µn and µ have densities fn and f , respectively,
such that µn(Ω) = µ(Ω) <∞. Let

sup
A∈F

| µn(A)− µ(A) |≤
∫
Ω

|f − fn | dλ→ 0

§13.2 Uniform Integrability

Uniform integrability is a property of a family of random variables which says that: (1) first
absolute moments are uniformly bounded (2) distribution tails of the R.Vs in the family converge
to 0 at a unifrom rate. If X is integrable, then |X|I{|Xn|≥a} → 0 almost everywhere as a→ ∞
and is dominated by |X| and hence

lim
a→∞

∫
{|Xn|≥a}

|X|dµ = 0

Definition 13.9 A sequence {Xn} of random variables is said to be uniformly integrable if

lim
a→∞

sup
n

∫
{|Xn|≥a}

|Xn|dµ = 0

or equivalently,
sup
n

E(|Xn|I{|Xn|≥a}) → 0 as a→ ∞

29



November 14, 2022 Probability Theory I, Hanan Ather

Theorem 13.10 — Suppose that µ(Ω) <∞ and Xn
a.s→ X, then

(i) If the fn are uniformly integrable, then f is integrable and∫
fndµ→

∫
fdµ

(ii) if f and fn are uniformly integrable, it follows by

§13.3 Change of variable

Let (Ω(1),F (1)) and (Ω(2),F (2)) be mesurable spaces, and suppose that the mapping T : Ω(1) →
Ω(2) is measurable F (1)/F (2). For a measure µ on F (1), define a measure

µT−1(A) := µ(T−1(A)), A ∈ F (2)

Theorem 13.11 — If f ≥ 0, then∫
Ω(1)

f(Tω)µ(dω) =

∫
Ω(2)

f(ω)µT−1dω

z1

z2
Z

f

f−1

x1

x1
X

det J
−1
f

=

∣∣∣∣2 0

0 2

∣∣∣∣−1

=
1
4

det J −1
f =

∣∣∣∣ 2 0
0 −2

∣∣∣∣ −1

= − 1
4
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§14.1 Egorov’s theorem

• Pointwise convergence does not imply uniform convergence

• Pointwise a.e convergence does not imply L∞

• L∞ is a function space, its elements are essentially bounded measurable functions 12

Egorov’s theorem: if we allow our self to reduce the domain of functions, we can find a subset on
which we have uniform convergence 13.

Theorem 14.1 (Egorov’s theorem) — Let (X,F , µ) be a finite measure space. Let {Xn} be a

sequence of R.V’s. Xn
a.s→ X, ∀δ > 0, there exists a measurable set A ⊆ X ≡ A(δ) such that

1. Xn → X uniformly on A, i.e.,

lim
n→∞

(
sup
a∈A

|X(a)−Xn(a)|
)

= 0

2. µ(Ac) < δ

Also ∀A ∈ B, ∀δ > 0, ∃{In}Nn=1 disjoint such that λ(A△∪n In) < δ

Proof. ∀f > 0, ∃g ≤ f such that

Proposition 14.2. Similar result to Egorov’s theorem

1. ∀f ∈ L1, ∀δ > 0, ∃g =
∑N

n=1 cnIIn such that
∫
Ω
|f − g| < δ

§14.2 Product measures

Let (X,A, µ1) and (Y,B, µ2) be two σ-finite measure spaces. Let Ω = X × Y = {(x, y) : x ∈
X, y ∈ Y } and S = {A × B : A ∈ A, B ∈ B}. Sets in S are called rectangles. It is easy to see
that S is a semi-algebra:

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

(A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc).

Let F = A× B be the σ-algebra generated by S.
Theorem 1.7.1 There is a unique measure µ on F with µ(A×B) = µ1(A)µ2(B). Notation µ

is often denoted by µ1 × µ2.
Proof By Theorem 1.1.9, it is enough to show that if A × B =

⋃
i(Ai × Bi) is a finite or

countable disjoint union, then

µ(A×B) =
∑
i

µ1(Ai)µ2(Bi).

For each x ∈ A, let I(x) = {i : x ∈ Ai}. B =
⋃

i∈I(x)Bi, so

µ1(A)µ2(B) =

∫
X

1A(x)µ2(B) dµ1(x).

12Essentially bound functions are bounded except on a set of zero measure
13Uniform convergence meas that there is an overall speed to the convergence. Pointwise convergence means at

every point the sequence of functions has its own speed of convergence (can be fast at at some points and very
very slow at other points)
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Integrating with respect to µ1 and using Exercise 1.5.6 gives

µ(A×B) =
∑
i

µ1(Ai)µ2(Bi),

which proves the result.
Let (X,F , µ) and (Y G, ν) be measurable spaces. Our aim is to construct on the Cartesian

Product X × Y a product measure π such that π(A×B) = µ(A)ν(B) for A ⊂ X and B ⊂ Y .
14

Theorem 14.3 — (i) If E ∈ F × G, then for each x the set {y : (x, y) ∈ E} ∈ G

(ii) If f is measurable F × G, then for each fixed x the function f(x, ·) is measurable G
and f(·, y) is measurable F

Let us define;

π1(E) =

∫
X

ν({y : (x, y) ∈ E})µdx

π2(E) =

∫
Y

ν({x : (x, y) ∈ E})νdy

Theorem 14.4 (Fubini’s theorem) —∫
X×Y

f(x, y)(µ× ν)d(x, y) =

∫
X

[∫
Y

f(x, y)dν(y)

]
dµ(x)

for f ∈ L1

Example 14.5. Let X = (0, 1), Y = (1,∞), both equipped with the Borel sets and Lebesgue
measure. Let f(x, y) = e−xy − 2e−2xy.∫ 1

0

∫ ∞

1

f(x, y)dydx =

∫ 1

0

x−1(e−x − e−2x)dx > 0

∫ ∞

1

∫ 1

0

f(x, y)dxdy =

∫ ∞

1

y−1(e−2y − e−y)dy < 0

Example 14.6. Let X = (0, 1) with A = the Borel sets and µ1 = Lebesgue measure. Let
Y = (0, 1) with B = all subsets and µ2 = counting measure. Let f(x, y) = 1 if x = y and 0
otherwise. ∫

f(x, y)µ2(dy) = 1 for all x so

∫ ∫
f(x, y)µ2(dy)µ1(dx) = 1∫

f(x, y)µ1(dx) = 0 for all y so

∫ ∫
f(x, y)µ1(dy)µ2(dx) = 0

Our last example shows that measurability is important or maybe that some of the axioms of
set theory are not as innocent as they seem.

14In the case mu and ν are Lebesgue measure on the line, π will be Lebesgue measure on the plane.
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